686 research outputs found

    Diffraction of Light by a Two-Dimensional Lattice of Spheres

    Get PDF
    Two-dimensional arrays of particles are of great interest because of their very characteristic optical properties and numerous potential applications. Although a variety of theoretical approaches are available for the description of their properties, methods that are accurate and convenient for computational procedures are always sought. In this work, a new technique to study the diffraction of a monochromatic electromagnetic field by a two-dimensional lattice of spheres is presented. The method, based on Fourier series, can take into account an arbitrary number of terms in the multipole expansion of the field scattered by each sphere. This method has the advantage of leading to simple formulas that can be readily programmed and used as a powerful tool for nanostructure characterization

    Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram

    Get PDF
    Epilepsy is a medical term which indicates a common neurological disorder characterized by seizures, because of abnormal neuronal activity. This leads to unconsciousness or even a convulsion. The possible etiologies should be evaluated and treated. Therefore, it is necessary to concentrate not only on finding out efficient treatment methods, but also on developing algorithm to support diagnosis. Currently, there are a number of algorithms, especially nonlinear algorithms. However, those algorithms have some difficulties one of which is the impact of noise on the results. In this paper, in addition to the use of fractal dimension as a principal tool to diagnose epilepsy, the combination between ICA algorithm and averaging filter at the preprocessing step leads to some positive results. The combination which improved the fractal algorithm become robust with noise on EEG signals. As a result, we can see clearly fractal properties in preictal and ictal period so as to epileptic diagnosis

    Optical Absorption in Overcoats of Nanoparticle Arrays on a Metallic Substrate

    Get PDF
    Surface plasma oscillations in metallic particles as well as in thin metallic films have been studied extensively in the past decades. New features regarding surface plasma excitations are, however, constantly discovered, leading, for example, to surface-enhanced Raman scattering studies and enhanced optical transmission though metal films with nanohole arrays. In the present work, the role of a metallic substrate is examined in two cases, one involving an overcoat of dielectric nanoparticles and the other an overcoat of metallic nanoparticles. Theoretical results are obtained by modeling the nanoparticles as forming a two-dimensional, hexagonal lattice of spheres. The scattered electromagnetic field is then calculated using a variant of the Green function method. Comparison with experimental results is made for nanoparticles of tungsten oxide and tin oxide deposited on either gold or silver substrates, giving qualitative agreement on the extra absorption observed when the dielectric nanoparticles are added to the metallic surfaces. Such absorption would be attributed to the mirror image effects between the particles and the substrate. On the other hand, calculations of the optical properties of silver or gold nanoparticle arrays on a gold or a silver substrate demonstrate very interesting features in the spectral region from 400 to 1,000 nm. Interactions between the nanoparticle arrays surface plasmons and their images in the metallic substrate would be responsible for the red shift observed in the absorption resonance. Moreover, effects of particle size and ambient index of refraction are studied, showing a great potential for applications in biosensing with structures consisting of metallic nanoparticle arrays on metallic substrates

    THE ASYMMETRIC EFFECTS OF EXCHANGE RATE VOLATILITY ON INTERNATIONAL TRADE IN A TRANSITION ECONOMY: THE CASE OF VIETNAM

    Get PDF
    This study examines the asymmetric effects of Exchange Rate Volatility (ERV) on Vietnam’s international trade. Using time-series data fitted to the Nonlinear Autoregressive Distributed Lag (NARDL) model, we find that positive changes in ERV have a negative impact on the trade balance in the short-run. On the other hand,increases in ERV have a positive impact on the trade balance in the long-run. We also find that negative changes in ERV do not have any significant effect on the trade balance

    Transport Properties of a GaAs/InGaAs/GaAs Quantum Well: Temperature, Magnetic Field and Many-body Effects

    Get PDF
    We investigate the zero and finite temperature transport properties of a quasi-two-dimensional electron gas in a GaAs/InGaAs/GaAs quantum well under a magnetic field, taking into account many-body effects via a local-field correction. We consider the surface roughness, roughness-induced piezoelectric, remote charged impurity and homogenous background charged impurity scattering. The effects of the quantum well width, carrier density, temperature and local-field correction on resistance ratio are investigated. We also consider the dependence of the total mobility on the multiple scattering effect

    Extracting Fetal Electrocardiogram from Being Pregnancy Based on Nonlinear Projection

    Get PDF
    Fetal heart rate extraction from the abdominal ECG is of great importance due to the information that carries in assessing appropriately the fetus well-being during pregnancy. In this paper, we describe a method to suppress the maternal signal and noise contamination to discover the fetal signal in a single-lead fetal ECG recordings. We use a locally linear phase space projection technique which has been used for noise reduction in deterministically chaotic signals. Henceforth, this method is capable of extracting fetal signal even when noise and fetal component are of comparable amplitude. The result is much better if the noise is much smaller (P wave and T wave can be discovered)

    Optically-enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer

    Get PDF
    In this work, the effect of gold nanorods on the performance of poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric-acid-methyl-ester bulk heterojunction solar cells was investigated. Gold nanorods were introduced into the anodic buffer layer by simply blending them with the solution of poly(3,4-ethyl enedioxythiophene):poly(styrenesulfonate). Even with a fairly low density of the nanorods, the resulting devices showed a remarkable 21.3% enhancement in the power conversion efficiency and a 13% enlargement in the short circuit current. By examining the absorbance profiles of active films made with different conditions,\ud such enhancements can be related to the localized transverse and longitudinal plasmon resonance modes in the metallic nanoparticles. Gold nanorods helped as well in reducing the device series resistance by up to 36%, which also contributed to the global enhancement in the efficiency

    G-CAME: Gaussian-Class Activation Mapping Explainer for Object Detectors

    Full text link
    Nowadays, deep neural networks for object detection in images are very prevalent. However, due to the complexity of these networks, users find it hard to understand why these objects are detected by models. We proposed Gaussian Class Activation Mapping Explainer (G-CAME), which generates a saliency map as the explanation for object detection models. G-CAME can be considered a CAM-based method that uses the activation maps of selected layers combined with the Gaussian kernel to highlight the important regions in the image for the predicted box. Compared with other Region-based methods, G-CAME can transcend time constraints as it takes a very short time to explain an object. We also evaluated our method qualitatively and quantitatively with YOLOX on the MS-COCO 2017 dataset and guided to apply G-CAME into the two-stage Faster-RCNN model.Comment: 10 figure

    Simulated Optical Properties of Gold Nanocubes and Nanobars by Discrete Dipole Approximation

    Get PDF
    The absorption spectra for a gold nanocube and for a gold nanobar are calculated by using the Discrete Dipole Approximation (DDA). The results show the excitation of a single albeit broad surface plasmon (SP) band of the gold nanocube. The extinction cross section of the gold nanocube is dominated by the absorption cross section that gains importance as the width increases. Further increasing the nanocube size beyond 80 nm will result in an optical response mainly characterized by scattering properties. The absorption spectrum of the nanobar shows the excitation of both the longitudinal mode (LM) and the transverse mode (TM). The nanobar is also compared to a cylinder, a spherically capped cylinder, and a spheroid of the same aspect ratio. The band position of the TM of the nanobar is red-shifted as compared to the ones calculated for other morphologies, while the LM is either blue-shifted or red-shifted depending on the morphologies considered
    corecore